Cost-effective hydraulic tomography surveys for predicting flow and transport in heterogeneous aquifers.
نویسندگان
چکیده
This study shows how a cost-effective hydraulic tomography survey (HTS) and the associated data estimator can be used to characterize flow and transport in heterogeneous aquifers. The HTS is an improved field hydraulic test that accounts for responses of hydraulic stresses caused by pumping or injection events at different locations of an aquifer. A sequential data assimilation method based on a cokriging algorithm is then used to map the aquifer hydraulic conductivity (K). This study uses a synthetic two-dimensional aquifer to assess the accuracy of predicted concentration breakthrough curves (BTCs) on the basis of the Kfields estimated by geometric mean, kriging, and HTS. Such Kfields represent different degrees of flow resolutions as compared with the synthetically generated one. Without intensive experimentsto calibrate accurate dispersivities at sites, the flow field based on the HTS Kfield can yield accurate predictions of BTC peaks and phases. On the basis of calculating mean absolute and square errors for estimated K fields, numerical assessments on the HTS operation strategy show that more pumping events will generally lead to more accurate estimations of Kfields, and the pump locations need to be installed in high Kzones to maximize the delivery of head information from pumps to measurement points. Additionally, the appropriate distances of installed wells are suggested to be less than one-third of the ln(K) correlation length in x direction.
منابع مشابه
Predicting flow and transport in highly heterogeneous alluvial aquifers
Successful prediction of groundwater flow and solute transport through highly heterogeneous aquifers has remained elusive due to the limitations of methods to characterize hydraulic conductivity (K) and generate realistic stochastic fields from such data. As a result, many studies have suggested that the classical advective-dispersive equation (ADE) cannot reproduce such transport behavior. Her...
متن کاملCharacterization of aquifer heterogeneity using transient hydraulic tomography
[1] Hydraulic tomography is a cost-effective technique for characterizing the heterogeneity of hydraulic parameters in the subsurface. During hydraulic tomography surveys a large number of hydraulic heads (i.e., aquifer responses) are collected from a series of pumping or injection tests in an aquifer. These responses are then used to interpret the spatial distribution of hydraulic parameters o...
متن کاملA field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities
[1] Hydraulic tomography is a promising approach for obtaining information on variations in hydraulic conductivity on the scale of relevance for contaminant transport investigations. This approach involves performing a series of pumping tests in a format similar to tomography. We present a field-scale assessment of hydraulic tomography in a porous aquifer, with an emphasis on the steady shape a...
متن کاملInvestigating the role of hydromechanical coupling on flow and transport in shallow fractured-rock aquifers
Fractured-rock aquifers display spatially and temporally variable hydraulic conductivity generally attributed to variable fracture intensity and connectivity. Empirical evidence suggests fracture aperture and hydraulic conductivity are sensitive to in situ stress. This study investigates the sensitivity of fractured-rock hydraulic conductivity, groundwater flow paths, and advectiondominated tra...
متن کاملAnalysis of hydraulic tomography using temporal moments of drawdown recovery data
[1] Transient hydraulic tomography (THT) is a potentially cost-effective and highresolution technique for mapping spatial distributions of the hydraulic conductivity and specific storage in aquifers. Interpretation of abundant well hydrographs of a THT survey, however, is a computational challenge. We take on this challenge by developing an estimation approach that utilizes the zeroth and first...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 43 10 شماره
صفحات -
تاریخ انتشار 2009